王才士老师简介

文章来源:管理员发布日期:2023-03-31浏览次数:11691


王才士,教授、博士生导师。现任中国概率统计学会理事,甘肃省数学会理事、概率统计专业委员会主任

1999华中科技大学概率论与数理统计专业博士研究生毕业,获博士学位。2001应邀在新加坡国立大学(NUS)短期学术访问2002年至2004在华中科技大学控制科学与工程博士后流动站从事博士后研究。2008在北京语言大学出国留学人员培训部接受英语培训。2011年至2012在美国伊利诺伊理工大学(IIT)做访问学者(国家公派)。曾担任华中科技大学兼职教授、博导(2006-2011)。

 主要从事随机分析理论及其应用的研究。迄今J. Stat. Phys.》、《J. Math. Phys.》、《Proc. Amer. Math. Soc.》、Quantum Inf. Process.》、Rev. Math. Phys.》、《J. Math. Anal. Appl.》、Stoch. Anal. Appl.等学术期刊发表论文70出版学术著作2;先后主持国家自然科学基金项目4甘肃省自然科学基金项目2项。2005年获“湖北省自然科学优秀学术论文二等奖”2006年获“湖北省自然科学二等奖”2008年获国家留学基金委出国留学全额奖学金(“国家公派访问学者”项目)同年获“甘肃省高等学校青年教师成才奖”2010年被国家科学技术奖励工作办公室聘为“国家科学技术奖评审委员”。迄今指导博士研究生20名(3名留学生),其中16人已获得博士学位。

 近年来承担的主要课程有:研究生课程《高等概率论》、《随机分析基础》和《白噪声分析》本科生课程《实变函数》和《泛函分析》

联系方式:

 地 址: 甘肃省兰州市安宁区安宁东路967号  邮编:730070       

 办公地点: 37000cm威尼斯致勤楼A1705室                 

E-mail: cswangnwnu@163.com

科研项目:

[1] 国家自然科学基金项目图随机Schrodinger算子的量子噪声方法” (批准号:12261080起止年月202301-202612月;本人为负责人).

[2] 国家自然科学基金项目量子随机游荡与量子Bernoulli噪声” (批准号:11861057起止年月201901-202212月;本人为负责人).

[3]国家自然科学基金项目“基于离散时间正规鞅泛函的量子随机分析模型及其应用” (批准号:11461061起止年月201501-201812月;本人为负责人).

[4] 国家自然科学基金项目“向量值分式白噪声泛函 (批准号:11061032起止年月:201101月至201312;本人负责人.

[5] 甘肃省自然科学基金项目“Levy白噪声理论及应用”(批准号:0710RJZA106起止年月:200801月至201012;本人负责人.

[6] 国家自然科学基金项目“白噪声泛函与广义算子的理论及应用”(批准号:10571065起止年月:200601月至200812;本人为主要成员).

[7] 甘肃省自然科学基金重点项目“白噪声分析及其应用”(批准号:ZS021-A25-004-Z起止年月:200201月至200412;本人负责人.

[8] 国家自然科学基金项目“量子白噪声分析及应用”(批准编号:10171035;起止年月:200201月至200412月;本人为主要成员).

奖励和荣誉:

[1] 湖北省自然科学二等奖,2006.

[2] 湖北省自然科学优秀学术论文二等奖,2005.

教材与专著:

[1] 黄志远、王才士、让光林, 量子白噪声分析, 湖北科学技术出版社 (2004).

[2] Jinqiao Duan, Shunlong Luo and Caishi Wang, Recent Development in Stochastic Dynamics and Stochastic Analysis, World Scientific (2010).

发表的部分学术论文:

[1] Lixia Zhang, Caishi Wang, Random Schrodinger operator on infinite- dimensional hypercube (I): ergodicity and density of states, Journal of Statistical Physics 190 (2023), Issue 8, 128.

[2] Lu Zhang, Caishi Wang, Quantum Markov semigroup for open quantum system interacting with quantum Bernoulli noises, Reviews in Mathematical Physics 35 (2023), Issue 8, 2350015.

[3] Jing Zhang, Caishi Wang, Lixia Zhang and Lu Zhang, Generalized weighted number operators on functionals of discrete-time normal martingales, Stochastics 95 (2023), Issue 6, 1078-1100.

[4] Jing Zhang, Caishi Wang, Lu Zhang and Lixia Zhang, Spectral integrals of Bernoulli generalized functionals, Stochastics 94 (2022), Issue 4, 519-536.

[5] Suling Ren, Caishi Wang andYuling Tang, Quantum Bernoulli noises approach to StochasticSchrodinger equation of exclusion type, Journal of Mathematical Physics61(2020), Issue6, 063509.

[6] Caishi Wang,Yuling Tang and Suling Ren, Weighted number operators on Bernoulli functionals and quantum exclusion semigroups, Journal of Mathematical Physics60(2019), Issue11, 113506.

[7] Caishi Wang, Ce Wang, Suling RenandYuling Tang, Open quantum random walk in terms of quantumBernoulli noise, Quantum Information Processing17 (2018), Article 46.

[8] Caishi Wang and Jinshu Chen,A characterization of operators on functionals of discrete-time normal martingales, Stochastic Analysis and Applications35 (2017),305-316.

[9] Jinshu Chen and Caishi Wang, Linear stochastic Schrodinger equations in terms of quantum Bernoullinoises, Journal of Mathematical Physics58(2017), Issue 5, 053510.

[10] Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897-1908.

[11] Caishi Wang and Jinshu Chen, Quantum Markov semigroups constructed from quantum Bernoulli noises, Journal of Mathematical Physics 57 (2016), Issue 2, 023502.

[12] Caishi Wang, Xiangying Lu and Wenling Wang, The stationary measure of a space-inhomogeneous three-state quantum walk on the line, Quantum Information Processing14 (2015), 867-880.

[13] Caishi Wang and Jihong Zhang, Localization of quantum Bernoulli noises, Journal of Mathematical Physics 54 (2013), Issue10, 103502.

[14] Caishi Wang, Yanchun Luand Huifang Chai, An alternative approach to Privault's discrete-time chaotic calculus, Journal of Mathematical Analysis and Applications 373 (2011), 643-654.

[15] Caishi Wang and Qi Han, Coherent states in Bernoulli noise functionals, Bulletin of the Australian Mathematical Society84 (2011), 116-126.

[16] Caishi Wang, Huifang Chaiand Yanchun Lu, Discrete-time quantum Bernoulli noises, Journal of Mathematical Physics 51 (2010), Issue5, 053528.

[17] Caishi Wang, Yulan Zhou, Decheng Feng and Qi Han, Fock factorization of B-valued analytic mappings on a Hilbert inductive limit, Bulletin of the Australian Mathematical Society 81 (2010), 236-250.

[18] Caishi Wang, Delta functions of observables and Radon-Nikodym derivatives of spectral measures, Infinite Dimensional AnalysisQuantum Probability and Related Topics 12 (2009), 427-437.

[19] Caishi Wang, Properties of delta functions of a class of observables on white noise functionals, Journal of Mathematical Analysis and Applications 329 (2007), 913-921.

[20] Caishi Wang, Mingshuang Quand Jinshu Chen, A white noise approach to infinitely divisible distributions on Gelʹfand triple, Journal of Mathematical Analysis and Applications 315 (2006), 425-435.

[21] Caishi Wang, A new idea to define the δ-function of an observable in the context of white noise analysis, Infinite Dimensional Analysis Quantum Probability and Related Topics 8 (2005), 659-668.

[22] Caishi Wang, Zhiyuan Huangand Xiangjun Wang, δ-function of an operator: a white noise approach, Proceedings of the American Mathematical Society 133 (2005), 891-898.

[23] Caishi Wang, Zhiyuan Huangand Xiangjun Wang, A W-transform -based criterion for the existence of bounded extensions of E-operators, Journal of Mathematical Analysis and Applications 288 (2003), 397-410.