张国宝老师简介

文章来源:管理员发布日期:2020-05-20浏览次数:12606



 张国宝,男,汉族,中共党员。现为37000cm威尼斯教授,博士研究生导师,美国Math. Review评论员和德国《Zentralblatt MATH》评论员。20046月毕业于37000cm威尼斯数学系,获学士学位。20116月在兰州大学获得理学博士学位(导师为李万同教授)20117月到37000cm威尼斯工作。201210-201510在37000cm威尼斯数学博士后流动站做博士后(合作导师为马如云教授)20184-20193月在加拿大纽芬兰纪念大学做博士后(合作导师为Xiao-Qiang Zhao教授)。

 张国宝近年来主要从事微分方程和生物数学的研究工作,共撰写和发表学术论文60余篇,其中多篇论文发表在国际、国内权威杂志《Calc. Var. PDE》、《J. Differential Equations》、《Z. Angew. Math. Phys.》、《Discrete Contin. Dyn. Syst.》、《Discrete Contin. Dyn. Syst. Ser. B》、《Nonlinear Anal. RWA》、《Nonlinear Anal.》、《J. Math. Anal. Appl.》、《Eur. J. Appl. Math.》、《Commun. Nonlinear Sci. Numer. Simulat.》、《J. Comput. Appl. Math.》和《Sci. China Math.》上;主持国家自然科学基金4项、教育部博士点新教师基金1项、中国博士后科学基金面上一等1项、甘肃省自然科学基金3项和甘肃省高等学校青年博士基金1项;2016年和2018年两次入选37000cm威尼斯“青年教师教学科研之星资助计划”。


联系方式:

址: 甘肃省兰州市安宁区安宁东路967号  邮编:730070       

办公地点: 37000cm威尼斯致勤楼A1708室                 

E-mail: zhanggb2011@nwnu.edu.cn


科研项目:

[1] 2023.01-2026.12 主持国家自然科学基金地区科学基金项目,编号:12261081

[2] 2021.04-2023.10 主持甘肃省自然科学基金一般项目,编号:21JR7RA121

[3] 2021.05-2022.04 主持甘肃省高等学校青年博士基金项目,编号:2021QB-018

[4] 2019.01-2022.12 主持国家自然科学基金地区科学基金项目,编号:11861056

[5] 2018.07-2020.06 主持甘肃省自然科学基金一般项目, 编号:18JR3RA093

[6] 2015.01-2017.12 主持国家自然科学基金青年科学基金项目,编号:11401478

[7] 2014.07-2016.12 主持甘肃省自然科学基金一般项目,编号:145RJZA220

[8] 2013.04-2014.10主持中国博士后科学基金面上项目一等,编号:2013M530435

[9] 2013.01-2015.12 主持教育部博士点新教师基金,编号:20126203120006

[10] 2013.01-2013.12 主持国家自然科学基金数学天元基金,编号:11226189

[11] 2012.01-2014.12 主持37000cm威尼斯青年教师科研提升计划一般项目,

 编号:NWNU-LKQN-11-22


奖励和荣誉:

1、科研奖励和荣誉

[1]20213月获37000cm威尼斯“优秀研究生导师”称号;

[2]20191月获甘肃省自然科学一等奖,3/5

[3] 201711月获“甘肃省优秀硕士学位论文”指导教师称号;

[4]20178月获甘肃省高校科研优秀成果一等奖,3/8

[5]20158月获甘肃省高校自然科学二等奖,3/6

[6] 20148获甘肃省高校科技进步一等奖,4/7

[7] 20128获甘肃省高校科技进步一等奖,4/6

2、教学奖励和荣誉

[1]指导2017年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组特等奖,全国二等奖;

[2]指导2019年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组一等奖;

[3]指导2020年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组一等奖;

[4]指导2021年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组一等奖;

[5]指导2022年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组一等奖;

[6]指导2023年高教社杯全国大学生数学建模竞赛获甘肃赛区本科组特等奖

发表的部分学术论文:

[1] J. He, G.-B. Zhang*, T. Liu, Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal, Eur. J. Appl. Math. in press, 2024.

[2] Z.-J. Yang, G.-B. Zhang*, J. He, Traveling wavefronts for a discrete diffusive Lotka-Volterra competition system with nonlocal nonlinearities,E. J. Differential Equations 2024, accpeted.

[3] J. Dang,G.-B. Zhang*, G. Tian, Wave propagation for a discrete diffusive mosquito-borne epidemic model,Qual. Theory Dyn. Syst. (2024) 23:104.

[4] J. He, G.-B. Zhang*,Traveling waves for a sign-changing nonlocal evolution equation with delayed nonlocal response, Bull. Malays. Math. Sci. Soc.(2024) 47 : 42.

[5] M.-L. Wang,G.-B. Zhang*, P. He, Invasion traveling waves of a three species Lotka-Volterra competitive system with nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simul. 132 (2024) 107939.

[6] X.-X. Yang, G.-B. Zhang*, Y.-C. Hao, Existence and stability of traveling wavefronts for a discrete diffusion system with nonlocal delay effects, Discrete Contin. Dyn. Syst. Ser. B 29 (2024) 1891-1922.

[7] X.-X. Yang, G.-B. Zhang*, G. Tian, The dynamics of traveling wavefronts for a model describing host tissue degradation by bacteria,Int. J. Biomath. 17 (2024) 2350031.

[8] T.-T. Du, G.-B. Zhang*, Y.-C. Hao, Y.-Q. Shu, Existence and stability of traveling wavefronts for a nonlocal delay Belousov-Zhabotinskii system, Appl. Anal.102 (2023) 4828-4850.

[9] G. Tian*, G.-B. Zhang, Propagation dynamics of a discrete diffusive equation with nonlocal delay, Math. Methods Appl. Sci. 46 (2023) 14072-14086.

[10] Y.-C. Hao, G.-B. Zhang*, J. He, Exponential stability of traveling wavefronts for a system modelling the geographic spread of black-legged tick Ixodes scapularis, Z. Angew. Math. Phys.(2023) 74 : 116.

[11] Z.-J. Yang, G.-B. Zhang*, J. He, Existence and stability of traveling wavefronts for a three species Lotka-Volterra competitive-cooperative system with nonlocal dispersal, Math. Methods Appl. Sci. 46 (2023) 13051-13073.

[12] Z.-J. Yang, G.-B. Zhang*, Speed selection for a Lotka-Volterra competitive system with local vs. nonlocal diffffusions, Qual. Theory Dyn. Syst. (2023) 22 : 43.

[13] X.-X. Yang, G.-B. Zhang*, Entire solutions for an inhomogeneous bistable discrete diffusive equation, Bull. Malays. Math. Sci. Soc.(2023) 46 : 54.

[14] Y.-C. Hao, G.-B. Zhang*, Global stability of bistable traveling wavefronts for a three-species   Lotka-Volterra competition system with nonlocal dispersal, Int. J. Biomath. 16 (2023) 2250106.

[15] Y.-X. Hao, W.-T. Li*, G.-B. Zhang,Entire solutions ofLotka-Volterra strong competition systems with nonlocal dispersal,Z. Angew. Math. Phys.(2022) 73 : 245.

[16] Y.-C. Hao, G.-B. Zhang*, Stability of bistable traveling wavefronts for a nonlocal dispersal  epidemic system, E. J. Differential Equations 2022 (2022) No. 49, 1-21.

[17] Y.-C. Hao, G.-B. Zhang*, The dynamics of traveling wavefronts for anonlocal delay competition system with local vs.nonlocal diffusions, Commun. Nonlinear Sci. Numer. Simul. 110 (2022) 106381.

[18] G. Tian, Z.-C. Wang*, G.-B. Zhang,Stability of traveling waves of the nonlocal Fisher–KPP equation,Nonlinear Anal.211 (2021) 112399.

[19] J. He, G.-B. Zhang*, The minimal speed of traveling wavefronts for a three-component competition system with nonlocal dispersal,Int. J. Biomath.14 (2021) 2150058.

[20] T. Liu, G.-B. Zhang*, Global stability of traveling wavesfor a spatially discrete diffusion system with time delay, Electron. Res. Arch.29 (2021) 2599-2618.

[21] Q. Zhang, G.-B. Zhang*,Front-like entire solutions for a Lotka-Volterra weak competition system with nonlocal dispersal,J. Dyn. Control Syst.27 (2021) 133-151.

[22] S. Su, G.-B. Zhang*, Global stability of traveling waves for delay reaction-diffusion systems without quasi-monotonicity, Electron. J. Differential Equations 2020 (2020) No.46, 1-18.

[23] T. Su, G.-B. Zhang*, Invasion traveling waves for a discrete diffusive ratio-dependent predator-prey model, Acta Math. Sci.Ser. B 40 (2020) 1459-1476.

[24] T. Su, G.-B. Zhang*, Global stability of non-monotone noncritical traveling waves for a discrete diffusion equation with a convolution type nonlinearity, Taiwanese J. Math. 24 (2020) 937-957.

[25] G.-B. Zhang*,Asymptotics and uniqueness of traveling wavefronts for a delayed model of theBelousov-Zhabotinsky reaction, Appl. Anal. 99 (2020) 1639-1660.

[26] G.-B. Zhang,X.-Q. Zhao*, Propagation phenomena for a two-speciesLotka-Volterra strong competition system with nonlocal dispersal,Calc. Var. Partial Differential Equations(2020) 59 :10.

[27]G.-B. Zhang*,X.-Q. Zhao, Propagation dynamics of a nonlocal dispersalFisher-KPP equationin a time-periodic shifting habitat, J. Differential Equations268 (2020) 2852-2885.

[28] F.-D. Dong, W.-T. Li*, G.-B. Zhang, Invasion traveling wave solutions of a predator-prey modelwith nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simulat.79 (2019) 104926, 1-17.

[29]G.-B. Zhang*,Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equationwith time delay, J. Math. Anal. Appl.475 (2019) 605-627.

[30] G.-B. Zhang*, F.-D. Dong, W.-T. Li, Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. B 24 (2019) 1511-1541.

[31] Z.-X. Yang, G.-B. Zhang*,Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity, Sci. China Math. 61 (2018) 1789-1806.

[32]Z.-X. Yang, G.-B. Zhang*, Global stability of traveling wavefronts for nonlocal reaction-diffusion equations with time delay, Acta Math. Sci.Ser. B 38 (2018) 289-302.

[33] G.-B. Zhang, Y. Li, Z.S. Feng*, Exponential stability of traveling waves in a nonlocal  dispersal epidemic model with delay, J. Comput. Appl. Math.344 (2018) 47-72.

[34] T. Su, G.-B. Zhang*, Stability of traveling wavefronts for a three-component Lotka-Volterra competition system on a lattice, Electron. J. Differential Equations2018 (2018), No.57, 1-16.

[35] G.-B. Zhang*, R. Ma, X.-S. Li, Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal,Discrete Contin. Dyn. Syst. Ser. B 23 (2018) 587-608.

[36] G.-B. Zhang*, G. Tian, Stability of traveling wavefronts for a two-component lattice dynamical system arising in competition models, Canad. Math. Bull.61 (2018) 423-437.

[37] Z.-X. Yang, G.-B. Zhang*, G. Tian, Z.-S. Feng, Stability of non-monotone non-critical traveling waves in disctete reaction-diffusion equations with time delay, Discrete Contin. Dyn. Syst. Ser. S10 (2017) 581-603.

[38] Y. Li, W.-T. Li*, G.-B. Zhang, Stability and uniqueness of traveling waves of a nonlocal dispersal SIR epidemic model, Dyn. Partial Differ. Equ.14 (2017) 87-123.

[39] G.-B. Zhang*, R. Ma, Front-like entire solutions for delayed nonlocal dispersal equation with convolution type bistable nonlinearity,Rocky Mountain J. Math.47 (2017) 1355-1404.

[40] G. Tian, G.-B. Zhang*, Z.-X. Yang, Stability of non-monotone critical traveling waves for spatially discrete reaction-diffusion equations with time delay,Turkish J. Math.41 (2017) 655-680.

[41] G. Tian, G.-B. Zhang*, Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system, J. Math. Anal. Appl. 447 (2017) 222-242.

[42] G.-B. Zhang*, Non-monotone traveling waves and entire solutions for a delayed nonlocal dispersal equation, Appl. Anal. 96 (2017) 1830-1866.

[43] G.-B. Zhang*, R. Ma, Existence, uniqueness and stability of traveling wavefronts for a nonlocal dispersal equation with convolution type bistable nonlinearity,Electron. J. Differential Equations 2015 (2015), No. 144, 1-27.

[44] J.-B. Wang, W.-T. Li*, G.-B. Zhang, Spatial dynamics of a nonlocal dispersal vector disease model with spatio-temporal delay,Electron. J. Differential Equations2015 (2015), No.122, 1-28.

[45] W.-T. Li*, L. Zhang, G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst.35 (2015) 1531-1560.

[46] G.-B. Zhang*, R. Ma, Spreading speeds and traveling waves for anonlocal dispersal equation with convolution typecrossing-monostable nonlinearity, Z. Angew. Math. Phys.65 (2014),819-844.

[47] G.-B. Zhang, W.-T. Li*,Nonlinear stability of traveling wavefronts in an age-structured population modelwith nonlocal dispersal and delay,Z. Angew. Math. Phys.64 (2013), 1643-1659.

[48] G.-B. Zhang, W.-T. Li*, Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations252 (2012) 5096-5124.

[49] G.-B. Zhang*, Global stability of traveling wave fronts for nonlocal delayed latticedifferential equations, Nonlinear Anal. Real World Appl.13 (2012) 1790-1801.

[50] G.-B. Zhang*, Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity,Nonlinear Anal.74 (2011) 6518-6529.

[51] G.-B. Zhang*, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal.74 (2011) 5030-5047.

[52] G.-B. Zhang*, W.-T. Li, Y.-J. Sun, Asymptotic behavior for nonlocal dispersal equations, Nonlinear Anal.72 (2010) 4466-4474.

[53] G.-B. Zhang, W.-T. Li*, G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model.49 (2009) 1021-1029.