赵孟老师简介

文章来源:37000cm威尼斯发布日期:2023-03-31浏览次数:6009


赵孟,男,汉族,中共党员,19909月出生,湖北仙桃人。现为37000cm威尼斯副教授,硕士生导师。20136月毕业于中国地质大学(武汉)信息与计算科学专业,获理学学士学位。20166月毕业于兰州大学应用数学专业,获理学硕士学位,导师为李万同教授。20206月毕业于兰州大学应用数学专业,获理学博士学位,导师为李万同教授。20189-20203月受国家留学基金委资助在澳大利亚新英格兰大学联合培养,合作导师为Yihong Du教授。20207月到37000cm威尼斯工作。

主要从事微分方程与生物数学的学习和研究工作,重点关注自由边界问题,共撰写与发表论文十余篇,发表在J. Differential Equations》、《J. Dynam. Differential Equations》、《Discrete Contin. Dyn. Syst.》、《Z. Angew. Math. Phys.》、《Nonlinear Anal. Real World Appl.、《Acta Math. Sci. Ser. B (Engl. Ed.)》、《Discrete Contin. Dyn. Syst. Ser. B》、《Commun. Pure Appl. Anal.》等杂志上。


联系方式

地    址: 甘肃省兰州市安宁区安宁东路967号  邮编:730070           

办公地点: 37000cm威尼斯致勤楼A1612室                                   

E-mail: zhaom@nwnu.edu.cn


教学工作

主讲《解析几何》《拓扑学》《高等数学》《线性代数与概率统计》和《数学史与数学文化》等课程


科研项目

[1] 2023.01-2025.12 主持国家自然科学基金青年科学基金项目(12201501)

[2] 2023.07-2025.06 主持甘肃省青年科技基金项目(23JRRA679)

[3] 2021.11-2022.10 主持中国博士后科学基金面上资助项目二等(2021M702700)

[4] 2021.07-2024.06 主持37000cm威尼斯青年教师科研能力提升计划一般项目(NWNU-LKQN2021-16)


发表的部分学术论文

[1] Zhao, Meng Dynamics of a reaction-diffusion waterborne pathogen model with free boundaries. Nonlinear Anal. Real World Appl. 77 (2024), Paper No. 104043, 15 pp.

[2] Cao, Jia-Feng; Wang, Jie; Zhao, Meng; Feng, Yu-Xia Dynamics of a nonlocal SIR epidemic model with free boundaries. Franklin Open4 (2023) 100030.

[3] Du, Yihong; Li, Wan-Tong; Ni, Wenjie; Zhao, Meng Finite or infinite spreading speed of an epidemic model with free boundary and double nonlocal effects, J. Dynam. Differential Equations(2022) https://doi.org/10.1007/s10884-022-10170-1

[4] Du, Yihong; Wang, Mingxin; Zhao, MengTwo species nonlocal diffusion systems with free boundaries. Discrete Contin. Dyn. Syst.42 (2022), no. 3, 1127–1162.

[5]Zhao, Meng; Li, Wantong; Cao, Jiafeng; Dynamics for an Sir Epidemic Model with Nonlocal Diffusion and Free Boundaries. Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 4, 1081–1106.

[6] Cao, Jia-FengLi, Wan-TongWang, JieZhao, Meng The dynamics of a Lotka-Volterra competition model with nonlocal diffusion and free boundaries. Adv. Differential Equations 26 (2021), no. 3-4, 163–200.

[7]Zhao, Meng The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks. Electron. Res. Arch. 28 (2020), no. 3, 1143–1160.

[8]Zhao, MengLi, WantongDu, Yihong The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Commun. Pure Appl. Anal. 19 (2020), no. 9, 4599–4620.

[9]Zhao, MengZhang, YangLi, Wan-TongDu, Yihong The dynamics of a degenerate epidemic model with nonlocal diffusion and free boundaries. J. Differential Equations 269 (2020), no. 4, 3347–3386.

[10]Zhao, MengLi, Wan-TongNi, Wenjie Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 3, 981–999.

[11]Zhao, MengLi, Wan-TongZhang, Yang Dynamics of an epidemic model with advection and free boundaries. Math. Biosci. Eng. 16 (2019), no. 5, 5991–6014.

[12] Cao, Jia-FengLi, Wan-TongZhao, Meng On a free boundary problem for a nonlocal reaction-diffusion model. Discrete Contin. Dyn. Syst. Ser. B23 (2018), no. 10, 4117–4139.

[13] Li, Wan-TongZhao, MengWang, Jie Spreading fronts in a partially degenerate integro-differential reaction–diffusion system. Z. Angew. Math. Phys. 68 (2017), no. 5, Paper No. 109, 28 pp.

[14]Zhao, MengLi, Wan-TongCao, Jia-Feng A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 9, 3295–3316.

[15] Cao, Jia-FengLi, Wan-TongZhao, Meng A nonlocal diffusion model with free boundaries in spatial heterogeneous environment. J. Math. Anal. Appl.449 (2017), no. 2, 1015–1035.