李勇勇老师简介

文章来源:37000cm威尼斯发布日期:2023-04-05浏览次数:2628




    李勇勇,男,汉族,中共党员,19929月生,甘肃平凉人。20216月毕业于西南大学基础数学专业,获理学博士学位(师从唐春雷教授),同年9月进入37000cm威尼斯工作。现为37000cm威尼斯副教授,硕士生导师,美国《Mathematical Reviews》评论员。现主要从事非线性泛函分析和椭圆型PDE变分问题的研究,已在J. Differential EquationsNonlinearityNonlinear Anal.Adv. Nonlinear Stud.Adv. Nonlinear Anal.Acta Math. Sci.J. Math. Anal. Appl. 以及Appl. Math. Lett.等期刊上发表SCI论文10余篇


联系方式:

址:甘肃省兰州市安宁区安宁东路967号  邮编:730070

办公地点:37000cm威尼斯致勤楼C304

E-mail:liyymath@nwnu.edu.cn


科研项目:

[1]国家自然科学基金青年科学基金项目,几类非自治Choquard方程的规范解(NO.12301143),2024.01-2026.12,主持,在研.

[2]国家自然科学基金地区科学基金项目,发展型与椭圆型薛定谔方程相结合的若干问题研究,(NO.12261079),2023.01-2026.12,参与,在研.

[3]37000cm威尼斯青年教师科研能力提升计划项目,(NO.NWNU-LKQN2022-02),临界Schrödinger-Maxwell方程的基态规范解,2022.07-2025.06,主持,在研.

[4]国家自然科学基金面上项目,几类非局部椭圆方程的基态解(NO.11971393), 2020.01-2023.12,参与,结题.

[5]中央高校项目,临界Choquard方程的基态解(NO.XDJK2020D032),2020.01-2020.12,主持,结题.

发表的部分学术论文:

[1] Y.-Y. Li, G.-D. Li, C.-L. Tang, Multiplicity and concentration of positive solutions for critical Choquard equations with concave perturbation, J. Math. Anal. Appl. 524(2023) 24 pp.

[2] G.-D. Li, Y.-Y. Li, C.-L. Tang, Ground state solutions for critical Schrödinger equations with Hardy potential, Nonlinearity 35 (2022) 5076-5108.

[3] G.-D. Li, Y.-Y. Li, C.-L. Tang, Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations, Adv. Nonlinear Anal. 11 (2022) 907-920.

[4] J.-L. Tan, Y.-Y. Li, C.-L. Tang, The existence and concentration of ground state solutions for Chern-Simons-Schrödinger systems with a steep well potential, Acta Math. Sci.42 (2022) 1125-1140.

[5] Y.-Y. Li, G.-D. Li, C.-L. Tang, Ground state sign-changing solutions for critical Choquard equations with steep well potential, Electron. J. Qual. Theory Differ. Equ. 54 (2022) 20 pp.

[6] Y.-Y. Li, G.-D. Li, C.-L. Tang, Radial ground state solutions for Choquard equations with Hardy-Littlewood-Sobolev lower critical growth, Complex Var. Elliptic Equ. 67 (2022) 2747-2758.

[7] G.-D. Li, Y.-Y. Li, C.-L. Tang, Existence and asymptotic behavior of ground state solutions for Schrödinger equations with Hardy potential and Berestycki-Lions type conditions, J. Differential Equations 275 (2021)77-115. 

[8] Y.-Y. Li, G.-D. Li, C.-L. Tang, Existence and concentration of solutions for Choquard equations with steep potential well and doubly critical exponents, Adv. Nonlinear Stud. 21 (2021) 135-154.

[9] Y.-Y. Li, G.-D. Li, X.-P. Wu, Positive ground state solutions for Choquard equations with lower critical exponent and steep well potential, Appl. Math. Lett. 118 (2021) 7 pp.

[10] Y.-Y. Li, G.-D. Li, C.-L. Tang, Ground state solutions for a class of Choquard equations involving doubly critical exponents, Acta Math. Appl. Sin. Engl. Ser. 2 37 (2021) 820-840.

[11] G.-D. Li, Y.-Y. Li, C.-L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ. 66 (2021)476-486.

[12] J.-C. Kang, Y.-Y. Li, C.-L. Tang,  Sign-changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-linear nonlinearity, Bull. Malays. Math. Sci. Soc. 44 (2021) 711-731.

[13] Y.-Y. Li, G.-D. Li, C.-L. Tang, Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well, Nonlinear Anal. 200 (2020) 21 pp.

[14] Y.-Y. Li, G.-D. Li, C.-L. Tang, Ground state solutions for Choquard equations with Hardy-Littlewood-Sobolev upper critical growth and potential vanishing at infinity, J. Math. Anal. Appl. 484 (2020) 15 pp.

[15] G.-D. Li, Y.-Y. Li, X.-Q. Liu, C.-L. Tang, A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities, Commun. Pure Appl. Anal.19 (2020) 1351-1365.

[16] G.-D. Li, Y.-Y. Li, C.-L. Tang, A positive solution of asymptotically periodic Schrödinger equations with local superlinear nonlinearities, Electron. J. Qual. Theory Differ. Equ. 30(2020) 15 pp.

[17] G.-D. Li, Y.-Y. Li, C.-L. Tang, L.-F. Yin, Existence and concentrate behavior of ground state solutions for critical Choquard equations, Appl. Math. Lett. 96 (2019) 101-107.

[18] Y.-Y. Li, Y.-F. Xue, C.-L. Tang, Ground state solutions for asymptotically periodic modified Schrödinger-Poisson system involving critical exponent, Commun. Pure Appl. Anal.18 (2019) 2299-2324.